{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "[toc]\n", "\n", "---\n", "# 数组的创建\n", "\n", "导入 numpy。\n", "\n", "```\n", "import numpy as np\n", "```\n", "\n", "numpy 提供的最重要的数据结构是`ndarray`,它是 python 中`list`的扩展。\n", "\n", "## 1. 依据现有数据来创建 ndarray\n", "\n", "### **(a)通过array()函数进行创建。**\n", "\n", "```python\n", "def array(p_object, dtype=None, copy=True, order='K', subok=False, ndmin=0): \n", "``` \n", "\n", "\n", "【例】\n", "```python\n", "import numpy as np\n", "\n", "# 创建一维数组\n", "a = np.array([0, 1, 2, 3, 4])\n", "b = np.array((0, 1, 2, 3, 4))\n", "print(a, type(a))\n", "# [0 1 2 3 4] \n", "print(b, type(b))\n", "# [0 1 2 3 4] \n", "\n", "# 创建二维数组\n", "c = np.array([[11, 12, 13, 14, 15],\n", " [16, 17, 18, 19, 20],\n", " [21, 22, 23, 24, 25],\n", " [26, 27, 28, 29, 30],\n", " [31, 32, 33, 34, 35]])\n", "print(c, type(c))\n", "# [[11 12 13 14 15]\n", "# [16 17 18 19 20]\n", "# [21 22 23 24 25]\n", "# [26 27 28 29 30]\n", "# [31 32 33 34 35]] \n", "\n", "# 创建三维数组\n", "d = np.array([[(1.5, 2, 3), (4, 5, 6)],\n", " [(3, 2, 1), (4, 5, 6)]])\n", "print(d, type(d))\n", "# [[[1.5 2. 3. ]\n", "# [4. 5. 6. ]]\n", "#\n", "# [[3. 2. 1. ]\n", "# [4. 5. 6. ]]] \n", "```\n", "\n", "### **(b)通过asarray()函数进行创建**\n", "\n", "`array()`和`asarray()`都可以将结构数据转化为 ndarray,但是`array()`和`asarray()`主要区别就是当数据源是**ndarray** 时,`array()`仍然会 copy 出一个副本,占用新的内存,但不改变 dtype 时 `asarray()`不会。\n", "\n", "```python\n", "def asarray(a, dtype=None, order=None):\n", " return array(a, dtype, copy=False, order=order)\n", "```\n", "\n", "【例】`array()`和`asarray()`都可以将结构数据转化为 ndarray\n", "```python\n", "import numpy as np\n", "\n", "x = [[1, 1, 1], [1, 1, 1], [1, 1, 1]]\n", "y = np.array(x)\n", "z = np.asarray(x)\n", "x[1][2] = 2\n", "print(x,type(x))\n", "# [[1, 1, 1], [1, 1, 2], [1, 1, 1]] \n", "\n", "print(y,type(y))\n", "# [[1 1 1]\n", "# [1 1 1]\n", "# [1 1 1]] \n", "\n", "print(z,type(z))\n", "# [[1 1 1]\n", "# [1 1 1]\n", "# [1 1 1]] \n", "```\n", "\n", "【例】`array()`和`asarray()`的区别。(`array()`和`asarray()`主要区别就是当数据源是**ndarray** 时,`array()`仍然会 copy 出一个副本,占用新的内存,但不改变 dtype 时 `asarray()`不会。)\n", "```python\n", "import numpy as np\n", "\n", "x = np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]])\n", "y = np.array(x)\n", "z = np.asarray(x)\n", "w = np.asarray(x, dtype=np.float64)\n", "x[1][2] = 2\n", "print(x,type(x),x.dtype)\n", "# [[1 1 1]\n", "# [1 1 2]\n", "# [1 1 1]] int32\n", "\n", "print(y,type(y),y.dtype)\n", "# [[1 1 1]\n", "# [1 1 1]\n", "# [1 1 1]] int32\n", "\n", "print(z,type(z),z.dtype)\n", "# [[1 1 1]\n", "# [1 1 2]\n", "# [1 1 1]] int32\n", "\n", "print(w,type(w),w.dtype)\n", "# [[1. 1. 1.]\n", "# [1. 1. 1.]\n", "# [1. 1. 1.]] float64\n", "```\n", "\n", "\n", "【例】更改为较大的dtype时,其大小必须是array的最后一个axis的总大小(以字节为单位)的除数\n", "```python\n", "import numpy as np\n", "\n", "x = np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]])\n", "print(x, x.dtype)\n", "# [[1 1 1]\n", "# [1 1 1]\n", "# [1 1 1]] int32\n", "x.dtype = np.float\n", "\n", "# ValueError: When changing to a larger dtype, its size must be a divisor of the total size in bytes of the last axis of the array.\n", "```\n", "\n", "### **(c)通过fromfunction()函数进行创建**\n", "\n", "给函数绘图的时候可能会用到`fromfunction()`,该函数可从函数中创建数组。\n", "\n", "```python\n", "def fromfunction(function, shape, **kwargs):\n", "```\n", "\n", "\n", "【例】通过在每个坐标上执行一个函数来构造数组。\n", "\n", "```python\n", "import numpy as np\n", "\n", "def f(x, y):\n", " return 10 * x + y\n", "\n", "x = np.fromfunction(f, (5, 4), dtype=int)\n", "print(x)\n", "# [[ 0 1 2 3]\n", "# [10 11 12 13]\n", "# [20 21 22 23]\n", "# [30 31 32 33]\n", "# [40 41 42 43]]\n", "\n", "x = np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)\n", "print(x)\n", "# [[ True False False]\n", "# [False True False]\n", "# [False False True]]\n", "\n", "x = np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)\n", "print(x)\n", "# [[0 1 2]\n", "# [1 2 3]\n", "# [2 3 4]]\n", "```\n", "\n", "\n", "\n", "## 2. 依据 ones 和 zeros 填充方式\n", "\n", "在机器学习任务中经常做的一件事就是初始化参数,需要用常数值或者随机值来创建一个固定大小的矩阵。\n", "\n", "### **(a)零数组**\n", "\n", "- `zeros()`函数:返回给定形状和类型的零数组。\n", "- `zeros_like()`函数:返回与给定数组形状和类型相同的零数组。\n", "\n", "```python\n", "def zeros(shape, dtype=None, order='C'):\n", "def zeros_like(a, dtype=None, order='K', subok=True, shape=None):\n", "```\n", "\n", "【例】\n", "```python\n", "import numpy as np\n", "\n", "x = np.zeros(5)\n", "print(x) # [0. 0. 0. 0. 0.]\n", "x = np.zeros([2, 3])\n", "print(x)\n", "# [[0. 0. 0.]\n", "# [0. 0. 0.]]\n", "\n", "x = np.array([[1, 2, 3], [4, 5, 6]])\n", "y = np.zeros_like(x)\n", "print(y)\n", "# [[0 0 0]\n", "# [0 0 0]]\n", "```\n", "\n", "### **(b)1数组**\n", "\n", "- `ones()`函数:返回给定形状和类型的1数组。\n", "- `ones_like()`函数:返回与给定数组形状和类型相同的1数组。\n", "\n", "```python\n", "def ones(shape, dtype=None, order='C'):\n", "def ones_like(a, dtype=None, order='K', subok=True, shape=None):\n", "```\n", "\n", "【例】\n", "```python\n", "import numpy as np\n", "\n", "x = np.ones(5)\n", "print(x) # [1. 1. 1. 1. 1.]\n", "x = np.ones([2, 3])\n", "print(x)\n", "# [[1. 1. 1.]\n", "# [1. 1. 1.]]\n", "\n", "x = np.array([[1, 2, 3], [4, 5, 6]])\n", "y = np.ones_like(x)\n", "print(y)\n", "# [[1 1 1]\n", "# [1 1 1]]\n", "```\n", "\n", "### **(c)空数组**\n", "\n", "- `empty()`函数:返回一个空数组,数组元素为随机数。\n", "- `empty_like`函数:返回与给定数组具有相同形状和类型的新数组。\n", "\n", "```python\n", "def empty(shape, dtype=None, order='C'): \n", "def empty_like(prototype, dtype=None, order='K', subok=True, shape=None):\n", "```\n", "\n", "【例】\n", "```python\n", "import numpy as np\n", "\n", "x = np.empty(5)\n", "print(x)\n", "# [1.95821574e-306 1.60219035e-306 1.37961506e-306 \n", "# 9.34609790e-307 1.24610383e-306]\n", "\n", "x = np.empty((3, 2))\n", "print(x)\n", "# [[1.60220393e-306 9.34587382e-307]\n", "# [8.45599367e-307 7.56598449e-307]\n", "# [1.33509389e-306 3.59412896e-317]]\n", "\n", "x = np.array([[1, 2, 3], [4, 5, 6]])\n", "y = np.empty_like(x)\n", "print(y)\n", "# [[ 7209029 6422625 6619244]\n", "# [ 100 707539280 504]]\n", "```\n", "\n", "### **(d)单位数组**\n", "\n", "- `eye()`函数:返回一个对角线上为1,其它地方为零的单位数组。\n", "- `identity()`函数:返回一个方的单位数组。\n", "\n", "```python\n", "def eye(N, M=None, k=0, dtype=float, order='C'):\n", "def identity(n, dtype=None):\n", "```\n", "\n", "\n", "【例】\n", "```python\n", "import numpy as np\n", "\n", "x = np.eye(4)\n", "print(x)\n", "# [[1. 0. 0. 0.]\n", "# [0. 1. 0. 0.]\n", "# [0. 0. 1. 0.]\n", "# [0. 0. 0. 1.]]\n", "\n", "x = np.eye(2, 3)\n", "print(x)\n", "# [[1. 0. 0.]\n", "# [0. 1. 0.]]\n", "\n", "x = np.identity(4)\n", "print(x)\n", "# [[1. 0. 0. 0.]\n", "# [0. 1. 0. 0.]\n", "# [0. 0. 1. 0.]\n", "# [0. 0. 0. 1.]]\n", "```\n", "\n", "### **(e)对角数组**\n", "\n", "- `diag()`函数:提取对角线或构造对角数组。\n", "\n", "```python\n", "k : int, optional 对角线的位置,大于零位于对角线上面,小于零则在下面。\n", "def diag(v, k=0):\n", "```\n", "\n", "【例】\n", "```python\n", "import numpy as np\n", "\n", "x = np.arange(9).reshape((3, 3))\n", "print(x)\n", "# [[0 1 2]\n", "# [3 4 5]\n", "# [6 7 8]]\n", "print(np.diag(x)) # [0 4 8]\n", "print(np.diag(x, k=1)) # [1 5]\n", "print(np.diag(x, k=2)) # [2]\n", "print(np.diag(x, k=-1)) # [3 7]\n", "\n", "v = [1, 3, 5, 7]\n", "x = np.diag(v)\n", "print(x)\n", "# [[1 0 0 0]\n", "# [0 3 0 0]\n", "# [0 0 5 0]\n", "# [0 0 0 7]]\n", "```\n", "\n", "### **(f)常数数组**\n", "\n", "- `full()`函数:返回一个常数数组。\n", "- `full_like()`函数:返回与给定数组具有相同形状和类型的常数数组。\n", "\n", "```python\n", "def full(shape, fill_value, dtype=None, order='C'):\n", "def full_like(a, fill_value, dtype=None, order='K', subok=True, shape=None):\n", "```\n", "\n", "\n", "【例】\n", "```python\n", "import numpy as np\n", "\n", "x = np.full((2,), 7)\n", "print(x)\n", "# [7 7]\n", "\n", "x = np.full(2, 7)\n", "print(x)\n", "# [7 7]\n", "\n", "x = np.full((2, 7), 7)\n", "print(x)\n", "# [[7 7 7 7 7 7 7]\n", "# [7 7 7 7 7 7 7]]\n", "\n", "x = np.array([[1, 2, 3], [4, 5, 6]])\n", "y = np.full_like(x, 7)\n", "print(y)\n", "# [[7 7 7]\n", "# [7 7 7]]\n", "```\n", "\n", "\n", "\n", "## 3. 利用数值范围来创建ndarray\n", " - `arange()`函数:返回给定间隔内的均匀间隔的值。\n", " - `linspace()`函数:返回指定间隔内的等间隔数字。\n", " - `logspace()`函数:返回数以对数刻度均匀分布。\n", " - `numpy.random.rand()` 返回一个由[0,1)内的随机数组成的数组。\n", "\n", "```python\n", "def arange([start,] stop[, step,], dtype=None): \n", "def linspace(start, stop, num=50, endpoint=True, retstep=False, \n", " dtype=None, axis=0):\n", "def logspace(start, stop, num=50, endpoint=True, base=10.0, \n", " dtype=None, axis=0):\n", "def rand(d0, d1, ..., dn): \n", "```\n", "\n", "\n", "【例】\n", "```python\n", "import numpy as np\n", "\n", "x = np.arange(5)\n", "print(x) # [0 1 2 3 4]\n", "\n", "x = np.arange(3, 7, 2)\n", "print(x) # [3 5]\n", "\n", "x = np.linspace(start=0, stop=2, num=9)\n", "print(x) \n", "# [0. 0.25 0.5 0.75 1. 1.25 1.5 1.75 2. ]\n", "\n", "x = np.logspace(0, 1, 5)\n", "print(np.around(x, 2))\n", "# [ 1. 1.78 3.16 5.62 10. ] \n", " #np.around 返回四舍五入后的值,可指定精度。\n", " # around(a, decimals=0, out=None)\n", " # a 输入数组\n", " # decimals 要舍入的小数位数。 默认值为0。 如果为负,整数将四舍五入到小数点左侧的位置\n", "\n", "\n", "x = np.linspace(start=0, stop=1, num=5)\n", "x = [10 ** i for i in x]\n", "print(np.around(x, 2))\n", "# [ 1. 1.78 3.16 5.62 10. ]\n", "\n", "x = np.random.random(5)\n", "print(x)\n", "# [0.41768753 0.16315577 0.80167915 0.99690199 0.11812291]\n", "\n", "x = np.random.random([2, 3])\n", "print(x)\n", "# [[0.41151858 0.93785153 0.57031309]\n", "# [0.13482333 0.20583516 0.45429181]]\n", "```\n", "\n", "\n", "\n", "---\n", "## 4. 结构数组的创建\n", "\n", "结构数组,首先需要定义结构,然后利用`np.array()`来创建数组,其参数`dtype`为定义的结构。\n", "\n", "### **(a)利用字典来定义结构**\n", "\n", "【例】\n", "```python\n", "import numpy as np\n", "\n", "personType = np.dtype({\n", " 'names': ['name', 'age', 'weight'],\n", " 'formats': ['U30', 'i8', 'f8']})\n", "\n", "a = np.array([('Liming', 24, 63.9), ('Mike', 15, 67.), ('Jan', 34, 45.8)],\n", " dtype=personType)\n", "print(a, type(a))\n", "# [('Liming', 24, 63.9) ('Mike', 15, 67. ) ('Jan', 34, 45.8)]\n", "# \n", "```\n", "\n", "### **(b)利用包含多个元组的列表来定义结构**\n", "\n", "【例】\n", "```python\n", "import numpy as np\n", "\n", "personType = np.dtype([('name', 'U30'), ('age', 'i8'), ('weight', 'f8')])\n", "a = np.array([('Liming', 24, 63.9), ('Mike', 15, 67.), ('Jan', 34, 45.8)],\n", " dtype=personType)\n", "print(a, type(a))\n", "# [('Liming', 24, 63.9) ('Mike', 15, 67. ) ('Jan', 34, 45.8)]\n", "# \n", "\n", "# 结构数组的取值方式和一般数组差不多,可以通过下标取得元素:\n", "print(a[0])\n", "# ('Liming', 24, 63.9)\n", "\n", "print(a[-2:])\n", "# [('Mike', 15, 67. ) ('Jan', 34, 45.8)]\n", "\n", "# 我们可以使用字段名作为下标获取对应的值\n", "print(a['name'])\n", "# ['Liming' 'Mike' 'Jan']\n", "print(a['age'])\n", "# [24 15 34]\n", "print(a['weight'])\n", "# [63.9 67. 45.8]\n", "```\n", "\n", "---\n", "# 数组的属性\n", "\n", "在使用 numpy 时,你会想知道数组的某些信息。很幸运,在这个包里边包含了很多便捷的方法,可以给你想要的信息。\n", "\n", "\n", "\n", " - `numpy.ndarray.ndim`用于返回数组的维数(轴的个数)也称为秩,一维数组的秩为 1,二维数组的秩为 2,以此类推。\n", " - `numpy.ndarray.shape`表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即 `ndim` 属性(秩)。\n", " - `numpy.ndarray.size`数组中所有元素的总量,相当于数组的`shape`中所有元素的乘积,例如矩阵的元素总量为行与列的乘积。\n", " - `numpy.ndarray.dtype` `ndarray` 对象的元素类型。\n", " - `numpy.ndarray.itemsize`以字节的形式返回数组中每一个元素的大小。\n", "\n", "```python\n", "class ndarray(object):\n", " shape = property(lambda self: object(), lambda self, v: None, lambda self: None)\n", " dtype = property(lambda self: object(), lambda self, v: None, lambda self: None)\n", " size = property(lambda self: object(), lambda self, v: None, lambda self: None)\n", " ndim = property(lambda self: object(), lambda self, v: None, lambda self: None)\n", " itemsize = property(lambda self: object(), lambda self, v: None, lambda self: None)\n", "```\n", "\n", "【例】\n", "```python\n", "import numpy as np\n", "\n", "a = np.array([1, 2, 3, 4, 5])\n", "print(a.shape) # (5,)\n", "print(a.dtype) # int32\n", "print(a.size) # 5\n", "print(a.ndim) # 1\n", "print(a.itemsize) # 4\n", "\n", "b = np.array([[1, 2, 3], [4, 5, 6.0]])\n", "print(b.shape) # (2, 3)\n", "print(b.dtype) # float64\n", "print(b.size) # 6\n", "print(b.ndim) # 2\n", "print(b.itemsize) # 8\n", "```\n", "\n", "在`ndarray`中所有元素必须是同一类型,否则会自动向下转换,`int->float->str`。\n", "\n", "【例】\n", "```python\n", "import numpy as np\n", "\n", "a = np.array([1, 2, 3, 4, 5])\n", "print(a) # [1 2 3 4 5]\n", "b = np.array([1, 2, 3, 4, '5'])\n", "print(b) # ['1' '2' '3' '4' '5']\n", "c = np.array([1, 2, 3, 4, 5.0])\n", "print(c) # [1. 2. 3. 4. 5.]\n", "```\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": { "height": "calc(100% - 180px)", "left": "10px", "top": "150px", "width": "307.188px" }, "toc_section_display": true, "toc_window_display": true }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }